Login | English | Deutsch

 Forschungsinformationssystem Universität Greifswald




Originalartikel | erschienen - Druck | peer reviewed

Optimizing a Diagnostic Model of Periodontitis by Using Targeted Proteomics.


JOURNAL OF PROTEOME RESEARCH 2023 / Juli ; 22(7): 2509 - 2515






Bibliometrische Indikatoren



Impact Factor = 3,8

Zitierhäufigkeit nach WOS = 4

DOI = 10.1021/acs.jproteome.3c00230

PubMed-ID = 37269315


Autoren

Reckelkamm S*, Kamińska I, Baumeister S, Holtfreter B1, Alayash Z, Rodakowska E, Baginska J, Kamiński K, Nolde M


Abstract

Periodontitis (PD), a widespread chronic infectious disease, compromises oral health and is associated with various systemic conditions and hematological alterations. Yet, to date, it is not clear whether serum protein profiling improves the assessment of PD. We collected general health data, performed dental examinations, and generated serum protein profiles using novel Proximity Extension Assay technology for 654 participants of the Bialystok PLUS study. To evaluate the incremental benefit of proteomics, we constructed two logistic regression models assessing the risk of having PD according to the CDC/AAP definition; the first one contained established PD predictors, and in addition, the second one was enhanced by extensive protein information. We then compared both models in terms of overall fit, discrimination, and calibration. For internal model validation, we performed bootstrap resampling ( = 2000). We identified 14 proteins, which improved the global fit and discrimination of a model of established PD risk factors, while maintaining reasonable calibration (area under the curve 0.82 vs 0.86; < 0.001). Our results suggest that proteomic technologies offer an interesting advancement in the goal of finding easy-to-use and scalable diagnostic applications for PD that do not require direct examination of the periodontium.

Veröffentlicht in

JOURNAL OF PROTEOME RESEARCH


Jahr 2023
Monat/Hj. Juli
Impact Factor (2023) 3,8
Volume 22
Issue 7
Seiten 2509 - 2515
Open Access nein
Peer reviewed ja
Artikelart Originalartikel
Artikelstatus erschienen - Druck
DOI 10.1021/acs.jproteome.3c00230
PubMed-ID 37269315

Allgemeine Daten zur Fachzeitschrift

Kurzbezeichnung: J PROTEOME RES
ISSN: 1535-3893
eISSN: 1535-3907
Land: USA
Sprache: English
Kategorie(n):
  • BIOCHEMICAL RESEARCH METHODS


Impact Factor Entwicklung

Jahr Impact Factor
2008 5,684
2009 5,132
2010 5,46
2011 5,113
2012 5,056
2013 5,001
2014 4,245
2015 4,173
2016 4,268
2017 3,95
2018 3,78
2019 4,074
2020 4,466
2021 5,37
2022 4,4
2023 3,8
2024 3,6

Themenschwerpunkte


FAQs | Impressum | Datenschutz